Как и многие из нас, квантовые физики не любят идти на компромиссы. Вместо того, чтобы делать выбор между различными технологиями создания кубитов, они предпочли бы объединить двух лучших кандидатов: захваченных в оптическую ловушку ионов и водородоподобных ридберговских атомов. Шаг к достижению этой цели был недавно сделан исследователями из Стокгольмского университета. Им удалось перевести захваченный ион стронция в ридберговское состояние.

Различие в скорости осцилляций нейтрино и её античастицы — антинейтрино, обнаруженное ещё несколько лет назад, подтвердилось в новом эксперименте, проведённом на установке T2K в Японии. Это указывает на нарушение фундаментальной CP-симметрии и может объяснить, почему в нашей Вселенной количество вещества не равно количеству антивещества.

Мысли о гигантском размере Вселенной многих пугают. Мы знаем, что видимая Вселенная протянулась на десятки миллиардов световых лет. Единственный способ хоть как-то осознать такие величины — это попытаться раздробить их на более мелкие части вплоть до более или менее понятного нам размера собственной планеты.

Международная группа астрономов опубликовала статью, в которой утверждает, что ею обнаружена экзопланета-гигант, до пятидесяти раз тяжелее Юпитера, окруженная кольцом пыли. На эту мысль их натолкнул анализ странных затмений звезды PDS 110, находящейся на расстоянии более тысячи световых лет от Земли.

Почему мы считаем ту или иную теорию или гипотезу убедительной, а её альтернативы маловероятными? Ответ на этот вопрос волнует философов науки уже много десятилетий: спорам Карла Поппера и Томаса Куна уже больше 40 лет. Относительно свежий пример, на котором можно его обсудить, — развитие представлений о тёмной материи. Признаки её существования обнаружили ещё в 1930-х годах, но только в 1970-х эту гипотезу начали рассматривать как основную. Почему?